Is There a Price Premium for Energy Efficiency Labels? Evidence from the Introduction of a Label in Korea

Ju Young Park

Economics, Rutgers University

Introduction

- Energy labeling is a benchmark for the end-consumer to see how economical, environmentally friendly and/or energy saving the product is.
- The first to look at the effect of new adoption of energy label on televisions.
- Attempts to address endogeneity problem by using difference-indifference method and fixed-effects estimation, which are novel approaches for the literature.

Literature

Study	Label, Product & Country	Method	Is there a price premium?
Blend and van Ravenswaay (1999)	eco-labeled apples in the US	survey	40% would buy with \$.40 premium
Ward et al. (2011)	refrigerators with Energy Star in the US	online survey	WTP estimate ranges from \$249.82 to \$349.30
Bjorner et al. (2004)	toilet paper, paper towels, detergents with Nordic Swan in Denmark	data on actual purchases	WTP ranges from 13% to 18% of the price.
Srinivasan and Blomquist (2009)	eco-labeled paper towels in the US	hedonic regression	69.9% price premium
Fuerst and McAllister (2011)	Energy Star- and LEED- certified buildings in the US	hedonic regression	3 to 4% rent premium, 28% sales price premium
Wallander (2008)	washing machines with Energy Star in the US	hedonic regression based on regression discontinuity design	Price premium does not exist.

Estimation and Results

• Basic Hedonic Regression

 $lnprice_i = \alpha + \beta energylabel_i + \gamma ecolabel_i + \delta' Z_i + v_i + \varepsilon_i$

Basic Hedonic Regression						
Energy Label	.529*** (.148)	169*** (.053)	.371** (.143)	.191*** (.048)		
Eco-label	.006	082** (.039)	.077	063 (.052)		
TV controls	No	Yes	No	Yes		
Brand effects	No	No	Yes	Yes		
Observations	129	129	129	129		
R^2	.0648	.8984	.2693	.9020		

Notes: Standard errors are robust and are in parenthesis. Significance at 0.10, 0.05, and 0.01 levels are indicated by *, **, and ***, respectively.

- Price premium seems to exist for products with the energy label.
- However, potential unobserved heterogeneity is a concern.

• Difference-in-difference

 $lnprice_{ij}$

- $= \alpha_i + \beta_1 energylabel_i + \beta_2 time_j + \beta_3 energylabel_i * time_j + \delta' Z_i + v_i + \varepsilon_{ij}$
- $energylabel_i$ captures permanent differences between the models with and without the label that is not captured in Z_i .
- $time_j$ controls for a time trend that may have influenced both labeled and unlabeled groups.
- β_3 is the coefficient of interest; it is the "treatment" effect of the Energy Efficiency Grade Label.

Fixed-effects

 $\Delta lnprice_{it} = \Delta \alpha_i + \Delta \theta_t + \beta \Delta energylabel_{it} + \delta' \Delta Z_{it} + \Delta v_{it} + \Delta \varepsilon_{it}$

- Δ denotes the change from June to August.
- Using repeated observations over two time periods, first-differencing the data will absorb the unobserved permanent model effects α_i and non-time-varying Z_{it} and v_{it} .

Variables	Difference-in-difference		Fixed-effects	
Energy Label*Time	008 (.013)	008 (.009)		
Energy Label	.167** (.054)	.219*** (.047)	008 (.009)	010 (.009)
Time	013* (.007)	013* (.007)		
TV controls	Yes	Yes	No	Yes
Brand effects	No	Yes	No	Yes
Observations	258	258	129	129
R^2	.9003	.9080	.0022	.2326

Notes: Standard errors are robust, clustered and are in parenthesis. Significance at 0.10, 0.05, and 0.01 levels are indicated by *, **, and ***, respectively.

- While basic hedonic regression suggests an apparent price premium on the energy label, that link disappears in difference-in-difference and fixed-effects estimation.
- It seems that certified models have higher prices in general, but the observed price difference arises because of permanent differences between the labeled and unlabeled groups.

Conclusion

- Using difference-in-difference and first-difference estimation to reduce omitted variable bias, the study finds that the observed price premium is caused by existing product differences instead of the energy efficiency label.
- Introducing more rigorous standard for the energy label may reduce information asymmetry problem and enhance credibility of the label.

References

Bjorner, T. B., Hansen, L. G., Russell, C. S., 2004. Environmental labeling and consumers' choice - an empirical analysis of the effect of the Nordic Swan. Journal of Environmental Economics and Management 47, 411–434.; Blend, J. R., van Ravenswaay, E. O., 1999. Measuring Consumer Demand for Eco-labeled Apples. American Journal of Agricultural Economics 81, 1072–1077.; Fuerst, F., McAllister, P., 2011. Eco-labeling in commercial office market: Do LEED and Energy Star offices obtain multiple premiums? Ecological Economics 70, 1220–1230.; Srinivasan, A. K., Blomquist, G. C., 2009. Ecolabeled paper towels: consumer valuation and expenditure analysis. Journal of Environmental Management 90, 314–320.; Wallander, S., 20008. Price Impacts of the Energy Star Label - A Case of Redundant Information. Working Paper.; Ward, D. O., Clark, C. D., Jensen, K. L., Yen, S. T., Russell, C. S., 2011. Factors influencing willingness-to-pay for the Energy Star Label. Energy Policy 39, 1450–1458.