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Storm surge caused by Hurricane Sandy triggered a need for new research on
inundation and associated risk. However, observational records of coastal water
levels are limited, which increases uncertainty in risk analyses such as exceedance
probabilities.
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Fig. 1. Annual exceedance probability curve for storm tide at The Battery with 95% confidence intervals. Dots indicate the annual
maximum water levels after removing the long-term trend in sea level. The position of the rightmost dot indicates the number of years of
data used in the calculation. [NOAA Tides and Currents website: tidesandcurrents.noaa.gov]

Figure 1 above displays probabilities of storm tide levels for over 100 years of
observational data, while our exceedance curve calculation (fig. 2) includes 88 years
due to limited availability. Both plots suggest a >1,000-yr mean return period of a
Sandy-level inundation (with a 300-yr lower bound), and demonstrate the magnitude
of uncertainty associated with a high flood level and limited range of data. Different
metrics are often used to quantify coastal inundation. Storm tide refers to the actual
water level relative to a fixed datum and includes the effects of both the astronomical
tide and meteorologically-induced water rise. Storm surge refers to the latter effect,
and 1s defined as the difference between the storm tide and the astronomical tide,
which removes the dependence of the storm timing relative to astronomical forcing.
Compared to figure 2, the mean return period of a Sandy-level storm surge lowers to
500 years with a lower bound around 120 years (fig. 3).
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Fig. 2. Annual exceedance probability curve for storm tide at The Battery with 95% confidence intervals (1926 — 2013). Dots indicate the

annual maximum water levels after removing the long-term trend in sea level. The position of the rightmost dot indicates the number of
years of data used in the calculation. Mean return level of a Sandy-level inundation event is > 1,000 years.
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Fig. 3. Annual exceedance probability curve for storm surge at The Battery with 95% confidence intervals (1926 — 2013). Dots indicate

the annual maximum surge after removing the long-term trend in sea level. The position of the rightmost dot indicates the number of
years of data used in the calculation. Mean return level of a Sandy-level storm surge event is roughly 500 years.

Most of the uncertainty 1n these return period calculations is due to difficulty in
resolving the tail of the distribution from limited observations. Global climate
models provide a means of simulating a much larger sample of potential surge-
producing events, allowing for better resolution of the tail of the frequency
distribution. Since 17 of the 20 greatest storm surge events at The Battery in New
York City occurred in association with extratropical cyclones (see below), we
examine the ability of a coupled atmosphere-ocean general circulation model with
50km atmospheric resolution (GFDL CM2.51) to realistically simulate extratropical
cyclones in the western North Atlantic Ocean that are capable of producing large
surges.

Date (GMT) Surge (m) Type of Date (GMT)  Surge (m) Type of
Storm Storm
10/30/2012  1:00 2.683 Hybrid || 10/27/1943  4:00 1.372 EC
11/25/1950  20:00  2.339 EC 12/27/2012  5:00 1.352 EC
9/27/1985  17:00 1.982 Hurr. 1/25/1979 2:00 1.350 EC
12/11/1992  17:00 1.736 EC 10/31/1991  9:00 1.342 EC
9/12/1960  18:00 1.660 Hurr. | 3/6/1962 19:00 1.331 EC
3/29/1984  14:00 1.517 EC 11/12/1968  15:00 1.327 EC
11/10/1932  5:00 1.490 EC 10/25/1980  18:00 1.310 EC
11/17/1935  21:00 1.421 EC 2/20/1927  19:00 1.309 EC
3/13/1993  22:00 1.403 EC 1/8/1996 6:00 1.295 EC
11/7/1953 10:00 1.398 EC 2/4/1961 10:00 1.233 EC
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To reduce uncertainty and provide credible return period estimates, it
1s 1mportant that GFDL CM2.5 realistically simulates intense
extratropical cyclones of the type that produce large surge events. We
address this question by first comparing model and MERRA reanalyses?
wind speeds, as winds are an important driver of storm surge. Since
record lengths differ greatly, (861 years from CMZ2.5 vs. 35 years from
MERRA), we use the following methods of comparison:

. Portion CM2.5 data into equal, non-overlapping 35-year periods to
match the length of MERRA observations (1979 — 2013)

. Calculate CM2.5 maximum wind speed over each period

’ Calculate average of these maximum values over all 35-year
periods, which can be interpreted as the typical maximum value
that might be expected during any arbitrary period of that length

Second, we compare CMZ2.5 sea level pressure with MERRA by
examining individual storms from the full record. We observe if overall
intensity and structure are similar by analyzing strength and size of
extratropical cyclones through pressure maps.
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Fig. 4. Comparison of near-surface (10m) wind speeds from CM2.5 and MERRA. (a) Mean value of maximum CM2.5
wind speed during each 35-yr period. (b) Maximum MERRA wind speed during 35-yr period of record (1979 — 2013).

Figure 4 above indicates that maximum wind speeds during the
MERRA period are comparable to a typical 35-year sample of CM2.5
wind speeds, particularly in the middle latitudes, suggesting that the
model 1s producing realistic extratropical cyclone activity. (The MERRA
wind speeds are systematically higher than the CM2.5 mean in the
subtropics, probably due to underestimation of tropical cyclone winds in
CM2.5). The maximum over all 35-yr periods of maximum winds (not
shown) exhibits similar variability to (b), with larger speed over most of
the region. This illustrates that the large number of realizations in the full
model provide more opportunities for extreme events to occur, such as
the strong extratropical cyclones shown in figure 5. The right column
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Fig. 5. Five-panel maps of sea-level pressure (mb) for a strong extratropical cyclone in CM2.5 (left) and MERRA (right).

shows the progression of the March 29, 1984 storm, which produced the third
highest recorded surge at The Battery by an extratropical cyclone. The CM2.5
January storm displays similar features and a comparable size, but possesses a
stronger pressure gradient and deeper core. Thus, it 1s likely that the full
CM2.5 run contains extratropical cyclones that are capable of producing
greater storm surges than might appear in the much shorter observational
record. This should enable us to better define the tail of the distribution of
extreme events by reducing uncertainty in return period calculations.

Topics of future plans for research include:

. Use an extratropical cyclone tracker for performing statistical analyses of extratropical cyclone climatology over the North Atlantic Ocean, including

genesis, track, and lysis densities?.

’ Identify a large subset of potential surge-producing storms in the mid-Atlantic region for further analyses using a storm surge model.
. Estimate storm surge risk from extratropical cyclones using CM2.5 meteorological conditions to force a storm surge model.

. Compare the characteristics of tropical cyclone storm surge with extratropical cyclone storm surge in the New York City region#.

. Analyze the response of extratropical cyclone-induced storm surge risk to projected 215t century changes in climate and sea level’.
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