

Questions: How did the internal adjustment work in the past? How will it work in the future?

Questions: How did the internal adjustment work in the past?

How will it work in the future?

What is the role of the water cycle?

Question:

- What components are important, what are not?

Question:

- What components are important, what are not?

Question:

- What components are important, what are not?

Question:

- What components are important, what are not?
- Is the groundwater important?

Is the Groundwater Reservoir Important?

What does groundwater do?

- Temporarily holds wet-period surplus, and later supplies dry-period deficit
- Sustains stream flow in humid and sub-humid climate, receives loosing streams in arid climate
- It is the slow component of the system: regulating dynamics?

Reservoirs	Volume (1000 km³)	Residence Time
Oceans	1,338	~ 4,000 years
Atmosphere	0.01	hours - days
Ice	24.1	10 - 10,000 years
Soil Water	0.02	hours - months
Surface Water	0.14	days - years
Groundwater	23.4	days - 10,000 years

Is the Groundwater Reservoir Important?

Without Groundwater:

- Model climate drifts away (little memory)
- Cannot close the water budget
- Model impact on water resources unrealistic and inconsistent
- Feedback cut off
- Uncertainty in future predictions

NCEP-NCAR and ECMWF 40-yr Reanalysis Surface Water Budget for Mississippi River Basin (Roads and Betts, 2000)

FIG. 1. Seasonal surface water NCEP–NCAR (light solid) and ECMWF (dashed) reanalysis budgets for the Mississippi basin: (a) precipitation (P); (b) runoff (N); (c) evaporation (E); (d) artificial surface water forcing (U); (e) total soil water plus snow (W); and (f) surface water tendency $\Delta W/\Delta t$. In (a) and (b) precipitation and stream flow observations are shown as heavy solid lines.

Is the Groundwater Reservoir Important?

Without Groundwater:

- Model climate drifts away (little memory)
- Cannot close the water budget
- Model impact on water resources unrealistic, and inconsistent
- Feedback cut off
- Uncertainty in future predictions

Is the Groundwater Reservoir Important?

Hypothesis:

- The groundwater reservoir directly influences the soil moisture (spatial structure, temporal memory) and boundary layer processes.
- It regulates the duration of floods and droughts through land-atmosphere feedbacks.
- It is essential to closing the continental water budget.

Approach:

- Mechanistic process model first principles observations
- Model experiments: links?

(a) Cross-section View

Equations:

Mass balance in groundwater storage:

$$\frac{dS_g}{dt} = \Delta x \Delta y R + \sum_{1}^{8} Q_n - Q_r$$

Darcy's Law for lateral groundwater flow:

$$Q_n = \left(\frac{K_n + K}{2}\right) \left[w \frac{h - (z - b) + h_n - (z_n - b)}{2}\right] \left(\frac{h_n - h}{s}\right)$$

Darcy's Law for groundwater – river exchange:

$$Q_{r} = \left(h - \overline{z}_{rb}\right) \left(\frac{\overline{K}_{rb}}{\overline{b}_{rb}}\right) \left(\overline{w}_{r} \sum L_{r}\right)$$

Mass balance in surface water storage:

$$\frac{dS_s}{dt} = Q_h + Q_r + \sum_{1}^{7} I_n - Q_s$$

River flow routing from cell to cell to the ocean: (linear reservoir model)

$$Q_s = S_s/k_s$$

Result-1: Equilibrium water table

Result-2:
Groundwater - River link

Result-3:

Flux across the water table: Soil/Plant – Groundwater link

Total net recharge (mm) June

Total net recharge (mm) May

Result-3: Groundwater – Soil/Plant link

Is the Groundwater Reservoir Important?

Hypothesis:

- The groundwater reservoir directly influences root zone soil water (spatial structure, temporal memory) and boundary layer processes (Richard Anyah).
- It regulates the duration of floods and droughts through its long term memory and land-atmosphere feedbacks (Richard Anyah, Deniz Kustu) NSF Water Cycle
- It is essential to closing the continental water budget (Gonzalo Miguez-Macho).

Q1: How does climate change modify the terrestrial water cycle?

Q1: How does climate change modify the terrestrial water cycle?

Q2: How does the change in water cycle modify the climate?

Q1: How does climate change modify the terrestrial water cycle?

Q2: How does the change in water cycle modify the climate?

Q3: What will the humans add to this 2-way traffic?

Large-Scale, Decades-long Groundwater Pumping

- Q1: How does climate change modify the terrestrial water cycle?
- Q2: How does the change in water cycle modify the climate?
- Q3: What will the humans add to this 2-way traffic?
- Q3: What role did the water cycle play in the past (G-IG)?

Ice Core Records:

CH₄ Source ~ Wetlands

Questions: what was the extent of the wetlands?

Ice Core Records:

CH₄ Source ~ Wetlands

Can we reconstruct the paleo-hydrology?

Q1: How does climate change modify the terrestrial water cycle?

Q2: How does the change in water cycle modify the climate?

Q3: What will the humans add to this 2-way traffic?

Q3: What role did the water cycle play in the past (G-IG)?